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Abstract: - This paper deals with the use of the first two vanishingmoments for constructing cubic spline-wavelets
orthogonal to polynomials of the first degree. A decrease in the supports of these wavelets is shown in comparison
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system of linear equations with a strict diagonal dominance.
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1 Introduction
In the theory of multi-resolution analysis, wavelets
form a basis of a set that fills the difference between
approximating spaces on dense and sparse grids [1,
p. 16]. In the classical case of approximation on uni-
form grids, infinitely spreading in both directions,
such a basis is generated by compressions and dis-
placements of a single wave function that has the ap-
pearance of a short or rapidly decreasing wave func-
tion (splash), which is called thewavelet. Due to com-
pression, wavelets can identify the difference in the
characteristics of a measured signal with varying de-
grees of details. Due to the displacement, they can
analyze the properties of a signal at different points
throughout the entire study interval. When analyzing
non-stationary signals, the wavelets locality property
provides a significant advantage over Fourier trans-
form, which provides only global information about
properties of a signal under study because the basis
functions used by it (sines and cosines) have infinite
supports. Since wavelets transform a system of ba-
sis functions with distributed parameters into a sys-
tem with lumped parameters, such a basis is more ef-
ficient for solving problems of conditionality and con-
vergence in numerical analysis [2, p. 478-481].

The basis for constructing wavelets is the exis-
tence of so-called scale (calibration) relations such
that each basis function on a sparse grid can be ex-
pressed as a linear combination of the basis functions
on a dense grid. In particular, such properties are typ-
ical for splines that are smooth functions glued to-
gether from pieces of polynomials of degree m on a
sequence of nested grids.

A typical property of semiorthogonal wavelets,
which [3] is sometimes used as a basis for the nu-
merical method of constructing wavelet transforms,
is the fact that wavelet decomposition provides the
best root-mean-square approximation of splines with
the dense grid using splines on a sparse grid. This
property provides an advantage in solving the prob-
lem of compressing discrete numerical information.
However, this advantage is leveled due to extremely
large supports [0, 2m+1] of resultant spline-wavelets.
Some progress in solving this problem was achieved
by constructing spline-wavelets with the first r mo-
ments equal to zero [4] under the condition of sup-
port length [0, (m+ r+1)/2]. Since semiorthogonal
wavelets have m + 1 zero moments, the idea of re-
ducing supports of wavelets by replacing the orthog-
onality property for the spline space on a sparse grid
with orthogonality for polynomials seems attractive.
Indeed, from the speed of approximation of smooth
functions [5, p. 52, 156] these two types of wavelets
are equivalent, and orthogonality to polynomials pro-
vides a locally maximal ”likeness” to a better root-
mean-square approach. At the same time in statistical
applications, orthogonality for polynomials of high
degree is not required at all [6], in contrast, for exam-
ple, to the problem of numerical differentiation [7].

In the case of cubic splines, a wavelet of the third
degree w3(x) [8] was found for which orthogonality
conditions for monomials∫ ∞

−∞
xkw3(x)dx = 0, k = 0, 1,

are fulfilled. It turned out that this wavelet has a very
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simple structure, in particular, the support is much
smaller than the support of classical semiorthogonal
spline wavelet of the third degree, namely, [0, 3] ⊂
[0, 7]. Moreover, it was found useful for constructing
the basis of Riesz [9]. A similar solution [10] was
found for the case of Hermite cubic spline-wavelet
orthogonal to monomials of the third degree. More-
over, the original method was proposed by the author
of this paper in [11, 12] for the even-odd splitting of
the system of the shifted wavelet transform equations
into a parallel solution of two tridiagonal systems of
linear equations of double smaller order with a strict
diagonal dominance. Wavelet transforms based on
Hermite splines also have some disadvantages: in the
problem of processing the measured information, it is
necessary first to calculate the approximate values of
derivatives at the nodes of the densest grid with an
acceptable accuracy [13], and only then the wavelet
transform algorithms can be applied. In terms of data
compression, the number of wavelet coefficients, in
this case, is much bigger than in methods based onB-
splines. Therefore, Section 3 considers the pioneer-
ing idea of using even-odd splitting in the case of the
shifted wavelet transform of ordinary cubic splines.

It should be noted that themethod used differs con-
siderably from the previously known fast algorithm
[14, 15] of the discrete wavelet transform because it
is based on the shifted wavelets with two vanishing
moments instead of the interpolation problem solu-
tions to produce statistically more smoothing (non-
interpolation) solution.

The even-odd splitting of the wavelet transform
matrix was independently used in [9] to prove the in-
vertibility of the matrix; however, there was no clear
indication that it can be useful for calculations in prac-
tice.

2 Construction of cubic spline
wavelets with two vanishing
moments on the interval

Let VL denotes a space of cubic splines of smoothness
C2 on the segment [a, b] with a uniform grid consist-
ing of the nodes∆L : xi = a+h · i, i = 0, 1, . . . , 2L,
h = (b − a)/2L, and the basis functions NL

i (v) =
φ3(v− i)∀i, where v = (x−a)/h, with the centers in
integers, are generated by means of compressions and
displacements of the function of the form [16, p. 89]:

φ3(t) =
1

6

4∑
j=0

(
4

j

)
(−1)j(t− j)3+,

where tn+ = (max{t, 0})n. Then these functions sat-
isfy the calibration relation [1, p. 91]:

φ3(t) =
1

8

4∑
k=0

(
4

k

)
φ3(2t− k). (1)

To facilitate the construction of wavelets near the
ends of a finite interval, we impose the following ad-
ditional conditions on the functions: f(a) = f ′(a) =
f(b) = f ′(b) = 0. The corresponding left base func-
tion has the form [14]

φb(t) =
3

2
t2+ − 11

12
t3+ +

3

2
(t− 1)3+ − 3

4
(t− 2)3+,

and satisfies the calibration relation

φb(t) =
1

4
φb(2t) +

11

16
φ3(2t) +

1

2
φ3(2t− 1)+

+
1

8
φ3(2t− 2). (2)

On any grid ∆L, L ≥ 2, a resulting spline of the
third degree can be represented as

SL(v) = C−1φb(v) +
2L−4∑
i=0

Ciφ3(v − i) +

+C2L−3φb(2
L − v), 0 ≤ v ≤ 2L, (3)

where coefficients Ci∀i are a solution, for example,
of the following interpolation problem:

SL(i) = f(xi), i = 1, 2, . . . , 2L − 1.

If grid ∆L−1, L ≥ 3, is obtained from ∆L by
deleting each second node, then the corresponding
space VL−1 with the basis functionsNL−1

i (v), whose
supports are twice bigger in width and whose centers
are in even nodes of the grid ∆L, is nested in VL.
The essence of the wavelet transform can be formu-
lated as follows: it allows us to decompose hierar-
chically the given function into a series of rough ap-
proximate representations of VL−1 and local refining
detailsWL−1 = VL − VL−1.

We use for constructing a basis for WL−1 the cu-
bic wavelets orthogonal to all polynomials of the first
degree of the following forms [8, 9]

w3(t) = −1

2
φ3(2t) + φ3(2t− 1)− 1

2
φ3(2t− 2),

wb(t) = φb(2t)− 1.35φ3(2t) + 0.6φ3(2t− 1).(4)

They have two zero moments∫ ∞

−∞
xkw3(x)dx =

∫ ∞

−∞
xkwb(x)dx = 0, k = 0, 1,

in addition, these wavelets have the supports reduced:

suppw3 = [0, 3], suppwb = [0, 2.5].
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2.1 Construction of the defining system of
the shifted wavelet transform equations

For further reasoning, it is convenient to write the ba-
sis spline functions in the form of a single rowmatrix,

φL(·) = [φb(·), φ3(·), φ3(· − 1), . . .

. . . , φ3(· − 2L + 4), φb(2
L − ·)

]
and to arrange the spline coefficients in the form of a
vector, CL = [C−1, C0, . . . , C2L−3]

T . Then formula
(3) is rewritten as SL(·) = φL(·)CL.

Similarly, we can write the basis shifted wavelet
functions, with the centers in odd integers instead of
the centers in even integers for the case of classical
semiorthogonal spline wavelets, in the form of a row
matrix as

ψL(·) = [wb(·), w3(·), w3(· − 1), . . .

. . . , w3(· − 2L + 3), wb(2
L − ·)

]
.

The corresponding coefficients of the decomposition
wavelets at the level L are assembled into a vector,
DL = [D−1, D0, . . . , D2L−2]

T . Meanwhile, the con-
dition of the complementarity of sizes of the resul-
tant spaces is Dim(VL) = Dim(VL−1)+Dim(WL−1).
Then, for the level of the expansion ofL−1, the func-
tions φL−1(·) and ψL−1(·) can be written as linear
combinations of the functions φL(·):

φL−1(·) = φL(·)PL and ψL−1(·) = φL(·)QL,

where the columns of the matrix PL are composed of
the relation coefficients (1) and (2) since each wide
basis function within the approximation interval can
be constructed from five narrow basis functions, each
wide basis function at the ends of the interval can be
constructed from four narrow basis functions while
the elements of the columns of thematrixQL are com-
posed of the relation coefficients (4).

Consequently, the following equalities hold:

φL(·)CL = φL−1(·)CL−1 + ψL−1(·)DL−1 =

= φL(·)PLCL−1 + φL(·)QLDL−1. (5)

Thus, the process of obtaining CL from CL−1 and
DL−1 can be written in the form

CL = PLCL−1 +QLDL−1

or, using the notation for block matrices,

CL =
[
PL | QL

] [CL−1

DL−1

]
. (6)

The following example shows how to get three ba-
sis spline functions from V2 and four base wavelets
fromW2 using seven basis functions from V3:[

P 3 | Q3
]
=



1
4 0 0 1 0 0 0
11
16

1
8 0 −1.35 −1

2 0 0
1
2

1
2 0 0.6 1 0 0

1
8

3
4

1
8 0 −1

2 −1
2 0

0 1
2

1
2 0 0 1 0.6

0 1
8

11
16 0 0 −1

2 −1.35
0 0 1

4 0 0 0 1


. (7)

Define the block matrix that inverse to the matrix[
PL | QL

]
: [

AL

BL

]
=
[
PL | QL

]−1
.

Then the process of creating a version with a
coarse resolution, CL−1, characterized by fewer co-
efficients, can be expressed by the matrix equality

CL−1 = ALCL,

where AL is a matrix of dimension
(
2L−1 − 1

)
×(

2L − 1
)
. In this case, the lost parts are collected in

another vector DL−1, defined by the expression

DL−1 = BLCL,

whereBL is a matrix of dimension 2L−1×
(
2L − 1

)
.

Matrices AL and BL are called analysis filters, and
matrices PL and QL are called synthesis filters [2,
p. 198], [17, p. 95].

The procedure for splitting coefficients CL into a
coarse version CL−1 and refining coefficients DL−1

can be applied recursively to this part CL−1 itself.
Consequently, initial coefficients can be represented
as a hierarchy of rough versions with resolutions
C0, C1, ..., CL−1 and refinementsD0, D1, ..., DL−1.
A similar recursive process is called a filter block [17,
p. 95]. Moreover, by values of wavelet coefficients
Dj , j = 0, 1, ..., L − 1, one can judge a significance
of corresponding refinement details. Insignificant de-
tails are removed in order to compress information.
Finally, coefficients CL can be reconstructed from a
sequence C0, D0, D1, ..., DL−1.

Unfortunately, as is easy to see, the matrices
that inverse to

[
PL | QL

]
lose their sparse structure.

This corresponds to how, in the classical theory of
wavelets, the explicit expansion of the basis functions
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of a spline space on a dense grid contains an infi-
nite sum of the basis functions of a spline space on
a thinned grid and wavelets [1, p. 142, 199]. The
essence of the approach proposed in [17, p. 96] for
such cases is that CL−1 and DL−1 can be calculated
from CL by solving the system of linear equations
(6). Moreover, they proposed to remake the matrix[
PL | QL

]
into the tape matrix by simply changing

the order of the unknowns so that the columns of the
matrices PL and QL were interleaved.

In our case, we can transform the matrix[
PL | QL

]
into a five-diagonal form, for example,[

P 3 | Q3
]
⇒

1 1
4

−1.35 11
16 −1

2
1
8

0.6 1
2 1 1

2
1
8 −1

2
3
4 −1

2
1
8

1
2 1 1

2 0.6
1
8 −1

2
11
16 −1.35
1
4 1


.

Hereinafter the empty positions of the matrices
are zero. Thus, the operation of wavelet decompo-
sition can be performed without explicitly presenting
and using the filters block. Nevertheless, although
the solvability of the resulting system is guaranteed
by the linear independence of the basis functions, the
question of its good conditionality remains open. As
can be seen from the above example, the derived sys-
tem of equations does not have a diagonal dominance,
which can complicate the wavelet analysis of big size
data.

3 Splitting algorithm
Let for resolution levels L, the matrix GL of size(
2L − 1

)
×
(
2L − 1

)
has the form

8 −4 −296
3 0

0 9 0 0 0
12 0 2 3 3 0
0 0 0 2 0 0 0
0 0 54 3 10 3 3 0
0 0 0 0 0 2 0 0
0 0 0 0 3 3 10 3 3

. . . . . . . . . . . . . . .
0 3 3 10 3 54 0 0

0 0 0 2 0 0 0
0 3 3 2 0 12

0 0 0 9 0
0 −296

3 −4 8



,

where diagonal points mean that the preceding two

rows are repeated the appropriate number of times,
each time moving two positions to the right, while the
matrix RL is compound from two blocks according
to 2L−1 − 1 basis spline functions of VL−1 and 2L−1

base wavelets ofWL−1:

12 4 −108 0 0 0
0 0 72 4 4 0 0
0 0 0 0 4 4 4 0

. . . . . . . . .
0 0 4 4 72 0 0

0 0 0 −108 4 12

5 −5 −215
3 0 0 0

3 1 63 1 1 0 0
0 0 18 1 6 1 1 0
0 0 0 0 1 1 6 1 1

. . . . . . . . . . . . . . .
0 1 1 6 1 18 0 0

0 1 1 63 1 3
0 0 −215

3 −5 5



,

where diagonal points mean that the preceding row
is repeated the corresponding number of times while
going right on one position.

We propose to perform calculations based on our
previously developed procedure [18, 19] of the even-
odd splitting of shifted wavelet decomposition of the
form (5), connecting the basis functions of the space
of splines on a dense grid, the basis functions on a
sparse grid, and shifted wavelets by finite implicit re-
lations of the expansion with three non-empty diago-
nals and strict diagonal dominance. For the type of
wavelets presented above, similar results are valid,
which, using the notations above, can be represented
in the following form.

Lemma 1 The basis functions of cubic spline space
on a dense grid, the basis functions on a sparse grid,
and shifted wavelets satisfy the matrix equality

φL(·)GL =
[
φL−1(·) | ψL−1(·)

]
RL, L ≥ 4. (8)

Proof. According to the construction, at the left end
of the interval [a, b] inside the support of the first two
wide basis functions, 3 wavelets and 6 narrow basis
functions overlap. Therefore, using the calibration re-
lations introduced earlier, we can write the following
finite implicit decomposition relation:

CL
−1φb(v) +

∑4
i=0C

L
i φ3(v − i) = (9)

= CL−1
−1

(
1
4φb(v) +

11
16φ3(v) +

1
2φ3(v − 1)+

+1
8φ3(v − 2)

)
+

+CL−1
0

(
1
8

∑4
k=0

(4
k

)
φ3(v − k)

)
+
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+DL−1
−1 (φb(v)− 1.35φ3(v) + 0.6φ3(v − 1))+

+
∑1

j=0D
L−1
j

(
−1

2φ3(v − j) + φ3(v − j − 1)−

−1
2φ3(v − j − 2)

)
, 0 ≤ v ≤ 8.

Since cubic splines are presented on both sides of
the equality (9), for their coincidence, the equality of
the corresponding expansion coefficients on the basis
of B-splines on a dense grid is sufficient. Then, to
calculate the uncertain coefficients in the relation (9),
we have, respectively, the following equations for the
numbers i = −1, 0, . . . , 4

CL
−1 =

1

4
CL−1
−1 +DL−1

−1 ,

CL
0 =

11

16
CL−1
−1 +

1

8
CL−1
0 − 1.35DL−1

−1 − 1

2
DL−1

0 ,

CL
1 =

1

2
CL−1
−1 +

1

2
CL−1
0 + 0.6DL−1

−1 +DL−1
0 ,

CL
2 =

1

8
CL−1
−1 +

3

4
CL−1
0 − 1

2
DL−1

0 − 1

2
DL−1

1 ,

CL
3 =

1

2
CL−1
0 +DL−1

1 ,

CL
4 =

1

8
CL−1
0 − 1

2
DL−1

1 .

We will try to find a decomposition relation relat-
ing to the expansion coefficients for odd numbers (the
case when CL

0 = CL
2 = CL

4 = 0). It is easy to verify
that the system obtained has a nontrivial solution for
which:

CL
−1 = −296

3
, CL

1 = 2, CL
3 = 54.

Wherein CL−1
−1 = −108, CL−1

0 = 72, and
DL−1

−1 = −215
3 , D

L−1
0 = 63, DL−1

1 = 18.
There is another non-trivial solution that binds the

expansion coefficients for the numbers −1 and 1:

CL
−1 = 8, CL

1 = 12, CL
3 = 0.

Wherein CL−1
−1 = 12, CL−1

0 = 0, and DL−1
−1 =

5, DL−1
0 = 3, DL−1

1 = 0.
We will try to find a decomposition relation relat-

ing to the expansion coefficients for three neighboring
numbers. In the case when CL

−1 = CL
0 = CL

4 = 0,
we get:

CL
1 = CL

3 = 3, CL
2 = 2.

Wherein CL−1
−1 = 0, CL−1

0 = 4, and DL−1
−1 =

0, DL−1
0 = DL−1

1 = 1.
There is another non-trivial solution that binds the

expansion coefficients for the numbers −1 and 0:

CL
−1 = −4, CL

0 = 9, CL
1 = CL

2 = CL
3 = 0.

Wherein CL−1
−1 = 4, CL−1

0 = 0, and DL−1
−1 =

−5, DL−1
0 = 1, DL−1

1 = 0.
According to the construction, inside the interval,

[a, b], in the support of every twowide basis functions,
3 wavelets, and 7 narrow basis functions overlap. For
example, on the segment [x0, x10], we can write the
following finite implicit decomposition relation:∑6

i=0C
L
i φ3(v − i) = (10)

=
∑1

j=0C
L−1
j

(
1
8

∑4
k=0

(4
k

)
φ3(v − j − k)

)
+

+
∑2

j=0D
L−1
j

(
−1

2φ3(v − j) + φ3(v − j − 1)−

−1
2φ3(v − j − 2)

)
, 0 ≤ v ≤ 10.

Since cubic splines are presented on both sides of
the equality (10), for their coincidence, the equality of
the corresponding expansion coefficients on the ba-
sis of B-splines on a dense grid is sufficient. Then,
to calculate the uncertain coefficients in the relation
(10), we have, respectively, the following equations
for the numbers i = 0, 1, . . . , 6

CL
0 =

1

8
CL−1
0 − 1

2
DL−1

0 ,

CL
1 =

1

2
CL−1
0 +DL−1

0 ,

CL
2 =

3

4
CL−1
0 +

1

8
CL−1
1 − 1

2
DL−1

0 − 1

2
DL−1

1 ,

CL
3 =

1

2
CL−1
0 +

1

2
CL−1
1 +DL−1

1 ,

CL
4 =

1

8
CL−1
0 +

3

4
CL−1
1 − 1

2
DL−1

1 − 1

2
DL−1

2 ,

CL
5 =

1

2
CL−1
1 +DL−1

2 ,

CL
6 =

1

8
CL−1
1 − 1

2
DL−1

2 .

For CL
3 = 10, we try to find a decomposition re-

lation relating to the expansion coefficients for odd
numbers (the case when CL

0 = CL
2 = CL

4 = CL
6 =

0). It is easy to verify that the system obtained has a
unique nontrivial solution for which

CL
1 = CL

5 = 3.

Wherein CL−1
0 = CL−1

1 = 4, and DL−1
0 =

DL−1
2 = 1, DL−1

1 = 6.
There are two more solutions linking the expan-

sion coefficients for three neighboring nodes. In the
case when CL

0 = CL
4 = CL

5 = CL
6 = 0, the solution

coincides with one of the solutions obtained above:
CL
1 = CL

3 = 3, CL
2 = 2, CL−1

0 = 4, CL−1
1 = 0,

and DL−1
0 = DL−1

1 = 1, DL−1
−1 = 0.
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In the case when CL
0 = CL

1 = CL
2 = CL

6 = 0, the
solution is symmetric:

CL
3 = CL

5 = 3, CL
4 = 2.

Wherein CL−1
0 = 0, CL−1

1 = 4, and DL−1
1 =

DL−1
2 = 1, DL−1

0 = 0.
The same solutions hold for all subsequent pairs of

wide basis functions.
At the right end of the interval [a, b], the solutions

mirror the solutions obtained above, i.e. expansion
coefficients for odd numbers (the case whenCL

2L−4 =

CL
2L−6 = CL

2L−8 = 0) are equal to:

CL
2L−3 = −296

3
, CL

2L−5 = 2, CL
2L−7 = 54.

Wherein CL−1
2L−1−3 = −108, CL−1

2L−1−4 = 72, and
DL−1

2L−1−2 = −215
3 , D

L−1
2L−1−3 = 63, DL−1

2L−1−4 = 18.
There is another non-trivial solution that binds the

expansion coefficients for the numbers 2L − 3 and
2L − 5:

CL
2L−3 = 8, CL

2L−5 = 12, CL
2L−5 = 0.

Wherein CL−1
2L−1−3 = 12, CL−1

2L−1−4 = 0, and
DL−1

2L−1−2 = 5, DL−1
2L−1−3 = 3, DL−1

2L−1−4 = 0.
In the case when CL

2L−3 = CL
2L−4 = CL

2L−8 = 0,
the solution coincides with one of the solutions ob-
tained on the penultimate pair of broad basis func-
tions for three adjacent numbers: CL

2L−5 = CL
2L−7 =

3, CL
2L−6 = 2, CL−1

2L−1−3 = 0, CL−1
2L−1−4 = 4, and

DL−1
2L−1−3 = DL−1

2L−1−4 = 1, DL−1
2L−1−2 = 0.

And there is another non-trivial solution that links
the expansion coefficients for the numbers 2L − 3 and
2L − 4:

CL
2L−3 = −4, CL

2L−4 = 9,

CL
2L−5 = CL

2L−6 = CL
2L−7 = 0.

Wherein CL−1
2L−1−3 = 4, CL−1

2L−1−4 = 0, and
DL−1

2L−1−2 = −5, DL−1
2L−1−3 = 1, DL−1

2L−1−4 = 0.
The coefficients of the left and right sides of

the obtained expansions comprise the corresponding
blocks of the matrices GL and RL, which were intro-
duced in the conditions of Lemma 1.

Corollary 1 For any resolution level L ≥ 4, the
shifted wavelet decomposition matrix of cubic splines
satisfies the equation[

PL | QL
]
RL = GL. (11)

Proof. It follows from the definition of the shifted
wavelet decomposition matrix that

[
φL−1(·) | ψL−1(·)

]
= φL(·)

[
PL | QL

]
.

Substituting the obtained expansion into the equal-
ity (8) and taking into account the linear indepen-
dence of the basis splines, we arrive at the statement
of Corollary 1.

Proposition 1 For L = 3 equation (11) is verified by
direct calculation using the example (7) and defini-
tions

G3 =



8 −4 −296
3 0 0 0 0

0 9 0 0 0 0 0
12 0 2 12 54 0 0
0 0 0 8 0 0 0
0 0 54 12 2 0 12
0 0 0 0 0 9 0
0 0 0 0 −296

3 −4 8


,

R3 =



12 4 −108 0 0 0 0
0 0 72 16 72 0 0
0 0 0 0 −108 4 12

5 −5 −215
3 0 0 0 0

3 1 63 8 18 0 0
0 0 18 4 63 1 3
0 0 0 0 −215

3 −5 5


.

After that, the solution of the system of equations
(6) can be written in a matrix form as:

[
CL−1

DL−1

]
=
[
PL | QL

]−1
CL = RL

(
GL
)−1

CL.

So, instead of just solving the system of the form
(6) we can solve the system

GLΞL = CL (12)

according to some values ΞL and after that simply
evaluate the valuesCL−1 andDL−1 with use of linear

transform
[
CL−1

DL−1

]
= RLΞL.

Nevertheless, we still need to split the system (12)
into even and odd nodes and adapt the result to pro-
vide a strict diagonal dominance to reduce the algo-
rithm to the solution of a tridiagonal system of equa-
tions that is preferable for parallelization and stability
of computation. We will achieve this goal by combin-
ing the tridiagonal sweep method with the incomplete
reduction method studied in [20, p. 198].

The following statement describes formally the se-
quence of calculation of shifted wavelet coefficients
based on the known spline expansion coefficients on
an arbitrary grid ∆L, L ≥ 3.
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Theorem 1 Suppose that the values ΞL =
[ξ−1, . . . , ξ2L−3]

T are computed from the solution of
the equations:

ξi =
1

9
Ci, i = 0, 2L − 4;

ξi =
1

2
Ci, i = 2, 4, . . . , 2L − 6; (13)

a) L > 3 :

446ξ3 + 150ξ5 = 27C−1 + 12C0 −
−18C1 − 48C2 +50C3 − 75C4,

6ξi−2 + 20ξi + 6ξi+2 = 2Ci − 3Ci−1 − 3Ci+1,

i = 5, 7, . . . , 2L − 9,

150ξi−2 + 446ξi = 27Ci+4 + 12Ci+3 −
−18Ci+2 − 48Ci+1 +50Ci − 75Ci−1,

i = 2L − 7; (14)

300ξ1 = 2C1 − 3C−1 − 3C2 −
−4

3C0 − 6ξ3,

300ξ2L−5 = 2C2L−5 − 3C2L−3 − 3C2L−6 −
−4

3C2L−4 − 6ξ2L−7,

12ξ−1 = C1 − 3
2C2 − 2ξ1 − 3ξ3,

12ξ2L−3 = C2L−5 − 3
2C2L−6 − 2ξ2L−5 −
−3ξ2L−7; (15)

b) L = 3 :

300ξ1 + 108ξ3 = 2C1 − 3C−1 − 3C2 −
4

3
C0,

108ξ1 + 300ξ3 = 2C3 − 3C5 − 3C2 −
4

3
C4;(16)

12ξ−1 = C1 −
3

2
C2 − 2ξ1 − 54ξ3,

12ξ5 = C3 −
3

2
C2 − 2ξ3 − 54ξ1. (17)

Then the vector of spline-coefficients of size(
2L−1 − 1

)
on the sparse grid ∆L−1 is the result of

multiplication of the matrix AL of size
(
2L−1 − 1

)
×(

2L − 1
)
by the vector ΞL of size

(
2L − 1

)
, while

the vector of shifted wavelet coefficients of size 2L−1

is equal to the same product with the matrix BL of
size 2L−1 ×

(
2L − 1

)
.

Proof. The Theorem 1 is proved by a direct verifica-
tion of the splitting scheme (11), (12). For example,
we multiply the second row of the matrix

[
PL | QL

]

by the first three columns of the matrix RL, con-
structed alike to the sample of matrices above:

11

16
·12−1.35·5− 1

2
·3 = 0,

11

16
·4+1.35·5− 1

2
·1 = 9,

11

16
· (−108) +

1

8
· 72 + 1.35 · 215

3
− 1

2
· 63 = 0.

These equalities mean that ξ0 equals to
1

9
C0 dur-

ing the solution of the system (12) with the matrixGL

obtained from the formula (11). The same manipula-
tions with the first row of the matrix

[
PL | QL

]
give

values
1

4
· 12 + 1 · 5 = 8,

1

4
· 4− 1 · 5 = −4,

1

4
· (−108)− 1 · 215

3
= −296

3
.

Moving the value−4ξ0 = −4

9
C0 to the right-hand

side of the resulting equation, we obtain the first equa-
tion of the system with respect to the values ΞL :

8ξ−1 −
296

3
ξ1 = C−1 +

4

9
C0.

Similar manipulations with the fourth row of the
matrix

[
PL | QL

]
guarantee the justification that ξ2

equals to 1

2
C2 during the solution of the system (12)

with the matrixGL. The same manipulations with the
third row of the matrix

[
PL | QL

]
give values

1

2
·12+0.6 ·5+1 ·3 = 12,

1

2
·4−0.6 ·5+1 ·1 = 0,

1

2
· (−108) +

1

2
· 72− 0.6 · 215

3
+ 1 · 63 = 2,

1

2
· 4 + 1 · 1 = 3,

1

2
· 4 + 1 · 1 = 3.

Moving the value 3ξ2 =
3

2
C2 to the right-hand

side of the resulting equation, we obtain the second
equation of the system with respect to the values ΞL :

12ξ−1 + 2ξ1 + 3ξ3 = C1 −
3

2
C2

and so on. For example, the following in order equa-
tions have the form:

54ξ1 + 10ξ3 + 3ξ5 = C3 −
3

2
C2 −

3

2
C4,

3ξ3 + 10ξ5 + 3ξ7 = C5 −
3

2
C4 −

3

2
C6,

· · ·
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The last equations are symmetric to the equations
received above. The advantage of the adopted sys-
tem, in contrast to the original system, is that it has
only three non-empty diagonals. This allows us to
apply the widely known method of elimination [20,
p. 73] to its solution. Nevertheless, the stability of this
method is not guaranteed, since the property of diag-
onal dominance is not satisfied in the first three and
the last three equations. We multiply the first equa-
tion of the system by (−3), and the second by 2 and
we add. As a result, the unknown ξ−1 is eliminated
and the resulting equation takes the form

300ξ1 + 6ξ3 = 2C1 − 3C−1 − 3C2 −
4

3
C0.

We multiply the resulting equation by (−9), and
the third equation by 50 and add. As a result, the
unknown ξ1 is eliminated and the resulting equation
takes the form 446ξ3 + 150ξ5 = 50C3 − 48C2 −
75C4 − 18C1 + 27C−1 + 12C0.

Similar transformations apply to the last three
equations of the system. Thus, the conditions (13)
and a) of the theorem can be written in the matrix
form as the equation (12). At the same time, the
system obtained has a strict diagonal dominance in
all equations. Therefore, the elimination method is
stable in application to the resulting system. The
case b) follows immediately from the system (6) with
L = 3 after renaming the variables and permutation
and rescaling of terms to receive the form with diag-
onal dominance. Hence, the conditions of Theorem 1
give a solution of the system (6).

The number of arithmetic operations needed to
solve the system (14) by elimination is 3 · (2L−1 − 5)
additions, 3·(2L−1−5)multiplications, and 2·(2L−1−
5)+1 divisions [20, p. 76]. To calculate the right-hand
sides of the equations, we need 3 · (2L−1 − 6) + 6
multiplications and 2 · (2L−1 − 6) + 6 additions;
to obtain the spline coefficients at the nodes of a
sparse grid, 3 · (2L−1 − 1) + 18 multiplications and
2 · (2L−1 − 1) + 14 additions is required. The most
time-consuming part of the algorithm is the calcula-
tion of shifted wavelet coefficients: 5·(2L−1−4)mul-
tiplications and 4 · (2L−1 − 4) additions. If we do not
make any differences between arithmetic operations,
then the total number of such operations for one step
of the shifted wavelet decomposition is 27·2L−1−64.
Taking into account that L = 3 in the last stage of
thinning, we get the number of arithmetic operations
to calculate the total set of shifted wavelet coeffi-
cients: 27 · 2L − 64L + 20. In comparison with the
previously known fast algorithm [14] of the discrete
wavelet transform, this algorithm makes it possible to
obtain shifted wavelet decomposition coefficients in
a different way with a comparable number of opera-

tions. The advantages of the new algorithm are its sta-
bility property and the programmatic usability, since
at each stage one system of linear equations (instead
of two systems in the known algorithm) is solved with
a matrix having a strict diagonal dominance.

4 Recommendations for practical
calculations

In a real situation of wavelet analysis of a discrete
signal, the homogeneous boundary conditions nec-
essary for creation of a shifted wavelet decompo-
sition are not satisfied. Therefore, before applying
the above algorithm, it is necessary to subtract val-
ues of the cubic interpolation Hermite polynomial
f(a) + (x− a)[f ′(a) + t(B + tA)] [21], where

A = −2(f(b)− f(a))/(b− a) + f ′(a) + f ′(b),

B = −A+ (f(b)− f(a))/(b− a)− f ′(a),

t = (x− a)/(b− a),

from set values.
After shifted wavelet analysis of obtained differ-

ences and reconstruction on shifted wavelet coeffi-
cients of the approximating spline of the third degree,
values of this polynomial are added to it.

Also, instead of original decomposition coeffi-
cients based onB-splines, you can use values of func-
tions that differ little from them. For the case of
wavelet data processing on a uniform grid, this trick
is very popular in the literature around the world; it is
called ”Wavelet Crime” [22, p. 232], [23], [24].

5 Conclusion
A pioneering application of the author’s procedure for
the even-odd splitting of defining system of shifted
wavelet decomposition onto the basis of B-splines is
considered. The procedure for the case of Hermite
shifted wavelets is adjusted to approximate functions
that do not require the setting of derivatives values,
which is important for practice. The advantage of
the proposed procedure over other methods of com-
pression is the ability to adaptively select the nodes
of the approximating spline based on the coefficients
of its shifted wavelet expansion. The extension of the
proposed method to higher-order splines and higher-
order zero moments can offer new possibilities for
developing stable algorithms for constructing and ap-
plying spline-wavelets.
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